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LETTER TO THE EDITOR 

Sum rules for quantum billiards 

C Itzykson, P Moussa and J ’M Luck 
Service de Physique Thborique, CEA-Saclay, 91 191 Cif-sur-Yvette Cedex, France 

Received 18 October 1985 

Abstract. We write explicit integral expressions for sums of inverse powers of the eigen- 
values of the Laplacian with Dirichlet boundary conditions in a simply connected bounded 
two-dimensional domain. 

In the course of an investigation of the spectrum of the Laplacian in two-dimensional 
systems, in particular triangles which will be the example discussed below, we came 
across a simple observation which yields an expression for sums of eigenvalues to 
negative integral powers. Although the derivation is easy, we were unable to trace it 
in the literature. 

Consider a simply connected bounded domain T in the Euclidean plane in which 
we wish to find the spectrum of minus the Laplace operator with Dirichlet boundary 
conditions, i.e. vanishing of the eigenfunctions on the boundary d T .  This ensures that 
the ground state has a positive eigenvalue. Call these discrete eigenvalues E ,  < E 2 s  
E3 . . . , and let 

From the Riemann mapping theorem, there exists a conformal one-to-one map 
te*z, with t inside T and z in the upper half-plane Im z > 0, in such a way that the 
boundary of T be mapped on the real axis. This is realised by an analytic function 
t(z) univalent in the upper half-plane, which can therefore be inverted in the form 
z(t) ,  ? E  T. Let f, to lie inside T, with z, zo their images. Set 

This is a function which vanishes on d T ,  is harmonic in the variable t in T - { t , } ,  
behaves as - (2v)-’1n~t- t0~ as t + t o  and is symmetric in the interchange t o t o .  In 
other words 

t o )  - S(f ,  t o )  G(f, t o ) l t e a r = O .  (3) 
Consequently with = t ,  and z ~ + ~  = zl, n 2 z: 

with 
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When p ( z )  is known as a function of z, this provides a sequence of explicit formulae. 
Of course l( T, s )  has a simple pole at s = 1. 

Weyl's asymptotic formula yields the residue of this pole in terms of the area A 
of T, and following an idea of Voros one can obtain the finite part as a single integral 
in the form 

l( T ;  S )  = (A/47r)[(s - l ) - ' +  g + O ( s - l ) ]  

d2z 
I ,mz>O lp(.,~' A = area of T = 

where y = Euler's constant = 0.577 21 . 
To prove (6) set, for 1 < s < 2, 

The sum for dR(A)/dA converges for ( - A )  outside the spectrum, and R(A) is chosen 
conveniently as 

d2t l im[G(t ,  t')-G(Alt, t ' ) ] .  
r c ~  "+' 

Here G(Alt, t ' ) ,  with G(OIt, t ' )  = G( t, t ' ) ,  is the generalisation of (2) fulfilling 

(-A+A)G(Alt, t ' ) = 6 ( t ,  t ' )  G ( ~ l t ,  t ' ) lrcaT=O.  (9) 

As A +CO, the Balian-Bloch (1970) representation of the Green function enables one 
to replace in (8), up to exponentially small terms, G(A(t, t') by G,(A(t, f ' ) ,  the free 
Green function 

KO is the modified Bessel function. 

A-0 R(A)=Al(T,2)+0(A) 

A - W  

we find by splitting the integral for [( T, s) in [0, A] and [A, CO], where A >> 1, that 

l ( T ,  l + ~ ) = R ( A ) + ( A / 4 7 r s h " ) + O ( ~ )  

Returning to equation (7), using the behaviour 

(11) 
A 

47r 
R(  A )  = - In A + 

which is the result stated in (6). 
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As an example consider the Schwarz mapping of a triangle on the upper half-plane, 
defined by 

t = 1; dx xPo-l( 1 - X ) ~ I - ’  Imz>O (13) 

with the principal determination of the powers, as x tends to the real axis between 0 
and 1. The triangle T,,,, has vertices to, t l ,  t,, corresponding to (0; 1; 00) in the 
z plane, and corresponding angles given by 

Z t angle 

O<a , , a1 , a ,< l  a,+ a1 + a ,  = 1. (15) 
An overall scale has been chosen for convenience. The function p,  to be used in 

p ( ~ ) = d z / d t = z ’ - “ 0 ( 1  - Z ) ’ - ~ I  (16) 

the sum rules, is 

and the area A of the triangle is 

In the scale given by (17) the constant g of equation (6) can explicitly be computed 
in terms of the logarithmic derivative $(a) of the Euler r function as 

The case of integrable triangles is a test of any evaluation of these formulae. In general, 
when a, and a1 are rational, and if q denotes their least common multiple, equation 
(16) turns into an algebraic differential equation (i.e. the vanishing of a polynomial 
in z and dz ld t )  of the form (dzldt)’ = Z ~ ( ~ - ~ O ) (  1 - Z ) ~ ( ’ - ~ I ) .  

Integrability corresponds to the cases ( a,, al, a,) = (f, f, f ) ,  (a ,  a, f) and (b ,  f, f), up 
to permutations. For instance, for an equilateral triangle (Itzykson and Luck 1986) 

(4r2/3”’A)I’l(7~i/3, i/3,1/3) 3 S )  = l ( S ) L ( S )  -5(2s) (19) 
where Riemann’s 5 function appears on the RHS 

and L ( s )  is a Dirichlet series 
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E.  

L ( n + l )  =[ ( -3 ) - '"C"/n! ] [9 '" ' ( f ) -~ '" ' ( f ) ]  n z l .  

Combining (19)-(21) with the sum rule for n = 1, i.e. the one giving the finite part 
g through equation (18), we derive the value of the logarithmic derivative of the above 
Dirichlet series at s = 1: 

0- 

6- 

4 -  

2 -  

This can be checked directly using the symmetry property 

2 sin $ r s I ' ( s ) L ( s )  = 31'2(f17)sL( 1 - s )  (23) 

and the product expansion of r functions. 

(lower bounds) 
The energy El of the ground state is given by the monotonic limit of estimates 

E~ = n-cn lim E!"' E',"'= l( T, n)-"". (24) 

We have tested the convergence of the sequence (24) on the example of isosceles 
triangles (ao= a l  = a, a== 1 -2a) ,  keeping a fixed area. The integrals l( T, n) have 
been evaluated for n S 4 using a grid of K 2 "  points in bipolar coordinates, and 
extrapolation with respect to K through Neville techniques. The convergence of the 
sequence (24) is satisfactory, even for values of n as small as four. The estimate E y '  

I I I I I I 

1 

a 

Figure 1. Plot of the estimates E:*' (lower full curve) and E!" (upper full curve) of the 
ground state energy of isosceles triangles, in units ( 2 ~ ) ' / ( 3 & A ) ,  against the parameter (I, 
compared with two exact results (arrows) and asymptotic expressions (broken curves). 
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is very close (less than 1% relative accuracy) to the exactly known results in two 
particular integrable cases: 

a = f (equilateral triangle) 

a = f (rectangular isoceles triangle) 

E ,  = ( 2 n ) ' / a A  

El = ; ( ~ T ) ~ / A .  
( 2 5 )  

The computation of E',4' needs much more computer time for less symmetric 
geometries ( a  + 0 or i). Figure 1 shows plots of the estimates E?)  and against 
the parameter a, together with the exact results ( 2 5 )  and the asymptotic expressions 

In these limiting situations the ground state wavefunction becomes concentrated in 
the region of largest breadth. The data confirm our intuition that, for fixed area, the 
energy is minimal in the most symmetric situation of an equilateral triangle. 

In a recent preprint Berry (1985)  has also made use of these sum rules in conjunction 
with asymptotic estimates to approximate the ground state energy. 

N Balazs and A Voros have developed similar ideas in an analogous problem. We 
thank them for stimulating conversations. In particular, the proof of equation ( 6 )  is 
based on some unpublished work of A Voros. 
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